Improving TOF Mass Resolution by Reducing Ion Detector Time Jitter - - Chromatography Online
Improving TOF Mass Resolution by Reducing Ion Detector Time Jitter

The Application Notebook

Steve Ritzau, Paula Holmes, Paul Mitchell, and Bruce Laprade, PHOTONIS USA

The resolution of time of flight (TOF) mass spectrometers continues to improve and attributes of the instrument that once were considered inconsequential have risen in importance as the push to higher and higher resolution continues. While the significance of the speed of the detector pulse has always been a primary concern, there are other aspects of the ion detector that also affect the ultimate resolution. In this study, we examine the effect of the detector input surface geometry on the resolution of a TOF mass spectrometer and compare our measured results with values predicted by theory. Using several input configurations, we isolate the detector's effect on ion arrival time and quantify its contribution to the measured resolution.

Experimental Conditions

For these experiments, we utilized an UltraFast™ Bipolar TOF detector, which has a single microchannel plate (MCP) at the input surface and produces a sub-nanosecond pulse width, which is effectively independent of the MCP parameters. The detector was used to measure calibrant mass spectra in a commercially available orthogonal TOF instrument with an input MCP that had 5 μm diameter pores biased 12 with respect to the surface normal. No software corrections to peak shapes were utilized. The measurement was then repeated using the same detector hardware but with two different input MCPs mounted in the assembly; one with 5 μm pores and 19 bias angle and another with 2 μm pores and 12 bias angle. All measurements were made keeping the TOF parameters fixed except for small variations in the reflectron mirror voltage.

Figure 1
For each configuration, the global MCP flatness was also measured using a machine vision system. This system maps the focal plane deviation of the 25 mm diameter top surface of MCP after it has been mounted in the detector. The maximal focus plane deviation value for this detector is typically <15 μm, and was <8 μm for the MCPs in this study.


Figure 1 illustrates how the reduction in pore size from 5 μm to 2 μm increased the mass resolution by 10% for masses of ~3000 amu. Figure 2 shows a 10% improvement in resolution when the bias angle is increased to 19 for these same high masses.

Figure 2
This improvement in resolution is due to a reduction in the ion penetration depth into the MCP. Combining these two effects, the 23.5 μm penetration depth of an MCP with 5 μm pore size and 12 bias angle could be reduced to 5.4 μm by utilizing 2 μm pore, 19 bias angle.

Additionally, we see no discernable change in overall sensitivity with the change in bias angle based on the limited sample of these individual MCPs. From our results we see that, with no other changes to the instrument, TOF mass resolution can be improved by:
  • Controlling MCP global flatness
  • Increasing MCP bias angle
  • Reducing MCP pore size.
P.O. Box 1159, Sturbridge, MA 01566
tel. (800)648-1800; fax (508)347-3849
; Website:


blog comments powered by Disqus
LCGC E-mail Newsletters
Global E-newsletters subscribe here:



Column Watch: Ron Majors, established authority on new column technologies, keeps readers up-to-date with new sample preparation trends in all branches of chromatography and reviews developments. LATEST: When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration

Perspectives in Modern HPLC: Michael W. Dong is a senior scientist in Small Molecule Drug Discovery at Genentech in South San Francisco, California. He is responsible for new technologies, automation, and supporting late-stage research projects in small molecule analytical chemistry and QC of small molecule pharmaceutical sciences. LATEST: HPLC for Characterization and Quality Control of Therapeutic Monoclonal Antibodies

MS — The Practical Art: Kate Yu brings her expertise in the field of mass spectrometry and hyphenated techniques to the pages of LCGC. In this column she examines the mass spectrometric side of coupled liquid and gas-phase systems. Troubleshooting-style articles provide readers with invaluable advice for getting the most from their mass spectrometers. LATEST: Radical Mass Spectrometry as a New Frontier for Bioanalysis

LC Troubleshooting: LC Troubleshooting sets about making HPLC methods easier to master. By covering the basics of liquid chromatography separations and instrumentation, John Dolan is able to highlight common problems and provide remedies for them. LATEST: How Much Can I Inject? Part I: Injecting in Mobile Phase

More LCGC Columnists>>

LCGC North America Editorial Advisory Board>>

LCGC Europe Editorial Advisory Board>>

LCGC Editorial Team Contacts>>

Source: The Application Notebook,
Click here